
uchuutools documentation

Manodeep Sinha

Mar 19, 2021

User Documentation

1 Getting started 3
1.1 Installation . 3

2 HDF5 Output Data Format 5
2.1 Consistent-Trees HDF5 format for Tree catalogues . 5

2.1.1 Container HDF5 file format . 5
2.1.2 HDF5-treecat file format . 7

2.2 Rockstar/Consistent-Trees HDF5 format for halo catalogues . 10
2.2.1 HDF5-halocat file format . 10

3 Community guidelines 13
3.1 License . 13

4 Converters 15
4.1 Available submodules . 15

5 Utilities for Consistent-Trees Catalogues 19

6 General Utilities 23

Python Module Index 27

Index 29

i

ii

uchuutools documentation

This is the documentation for the uchuutools package, a python package for converting ascii simulation data products
into more user-friendly datasets. The package was created by Manodeep Sinha @manodeep as part of the Uchuu
Project. uchuutools is written in pure Python 3 and publicly available on GitHub.

The documentation of uchuutools is spread out over several sections:

• User Documentation

• API Reference

User Documentation 1

https://github.com/manoodeep
http://www.skiesanduniverses.org/Simulations/Uchuu/
http://www.skiesanduniverses.org/Simulations/Uchuu/
https://www.python.org
https://github.com/uchuuproject/uchuutools

uchuutools documentation

2 User Documentation

CHAPTER 1

Getting started

1.1 Installation

uchuutools can be easily installed by either cloning the repository and installing it manually:

$ git clone https://github.com/uchuuproject/uchuutools
$ cd uchuutools
$ python -m pip install .

or by installing it directly from PyPI with:

$ python -m pip install uchuutools

uchuutools can now be imported as a package with import uchuutools.

3

https://github.com/uchuuproject/uchuutools
https://pypi.org/project/uchuutools

uchuutools documentation

4 Chapter 1. Getting started

CHAPTER 2

HDF5 Output Data Format

Within the following sections we will assume that the generated hdf5 file has been opened with the following code:

import h5py
if using the defaults, ``h5_filename`` could be
- ``./forest_0.h5`` (for Consistent-Trees tree catalogue)
- ``./out_0.list.h5`` (for Rockstar halo catalogue)
- ``./hlist_<scale_factor>.list.h5`` (for Consistent-Trees halo catalogue)
hf = h5py.File(h5_filename, 'r')

2.1 Consistent-Trees HDF5 format for Tree catalogues

The Consistent-Trees tree hdf5 format consists of two types of files:

1. one container hdf5 file,

2. one or more hdf5 files that contain the forest/tree/halo level information (we will refer to this as
hdf5-treecat file)

2.1.1 Container HDF5 file format

The following attributes of the container hdf5 file may be useful to the user:

1. Nfiles: Total number of hdf5 data files that are associated with this container file (np.int64)

2. TotNforests: Total number of forests stored across all associated Nfiles (np.int64)

3. TotNtrees: Total number of trees stored across all associated Nfiles (np.int64)

4. TotNhalos: Total number of halos stored across all associated Nfiles (np.int64)

The individual hdf5 files containing the halo-level information are embedded as ExternalLinks within the con-
tainer hdf5 file under File<ifile>, where ifile ranges from [0, Nfiles). Users can loop over these external
links and transparently read all the halos.

5

uchuutools documentation

import h5py
with h5py.File(container_file, 'r') as hf:

nfiles = hf.attrs['Nfiles']
for i in range(nfiles):

usage will depend on the value of ``write_halo_props_cont``
used during the creation of these files.
mvir = hf[f"File{i}/Forests/Mvir"]

def update_container_h5_file(fname, h5files,
standard_consistent_trees=True):

"""
Writes the container hdf5 file that has external links to
the hdf5 datafiles with the mergertree information.

Parameters

fname: string, required
The name of the output container file (usually ``forest.h5``). A
new file is always created, however, if the file ``fname`` previously
existed then the external links are preserved.

h5files: list of filenames, required
The list of filenames that were either newly created or updated.

If the container file ``fname`` exists, then the union of the filenames
that already existed in ``fname`` and ``h5files`` will be used to
create the external links

standard_consistent_tree: boolean, optional, default: True
Specifies whether the input files were from a parallel
Consistent-Trees code or the standard Consistent-Trees code. Assumed
to be standard (i.e., the public version) of the Consistent-Trees
catalog

Returns

Returns ``True`` on successful completion of the write

"""
import h5py

outfiles = h5files
if not isinstance(h5files, (list, tuple)):

outfiles = [h5files]

try:
with h5py.File(fname, 'r') as hf:

nfiles = hf['/'].attrs['Nfiles']
for ifile in range(nfiles):

outfiles.append(hf[f'File{ifile}'].file)
except OSError:

pass

outfiles = set(outfiles)
nfiles = len(outfiles)

(continues on next page)

6 Chapter 2. HDF5 Output Data Format

uchuutools documentation

(continued from previous page)

with h5py.File(fname, 'w') as hf:
hf['/'].attrs['Nfiles'] = nfiles
hf['/'].attrs['TotNforests'] = 0
hf['/'].attrs['TotNtrees'] = 0
hf['/'].attrs['TotNhalos'] = 0
attr_props = [('TotNforests', 'Nforests'),

('TotNtrees', 'Ntrees'),
('TotNhalos', 'Nhalos')]

for ifile, outfile in enumerate(outfiles):
with h5py.File(outfile, 'a') as hf_task:

if standard_consistent_trees:
hf_task.attrs['consistent-trees-type'] = 'standard'

else:
hf_task.attrs['consistent-trees-type'] = 'parallel'

for (out, inp) in attr_props:
hf['/'].attrs[out] += hf_task['/'].attrs[inp]

hf[f'File{ifile}'] = h5py.ExternalLink(outfile, '/')
return

2.1.2 HDF5-treecat file format

There may be one or more hdf5 data-files written as part of the conversion process. These files contain the actual
halo information, as well as tree-level and forest-level information contained in the original ascii Consistent-Trees tree
catalogues. In this section, we will describe this hdf5-treecat file format.

Note: The total number of hdf5 data-files associated with the container file is simply the number of parallel tasks used
during the ascii->hdf5 conversion. For serial conversions, there will be exactly one hdf5 data-file (by defaut, named
./forest_0.h5)

File-level Attributes (list(hf.attrs))

The hdf5-treecat file has attributes at the root-level to store metadata about the input ascii Consistent-trees
catalogues. The following attributes of the container hdf5 file facilitate reading the hdf5 file:

1. Nforests: Total number of forests stored in this file(np.int64)

2. Ntrees: Total number of trees stored in this file (np.int64)

3. Nhalos: Total number of halos stored in this file (np.int64)

4. simulation_params: An hdf5 group that contains cosmological parameters (Omega_M, Omega_L, hubble)
and the simulation boxsize (Boxsize)

give the HDF5 root some attributes
hf.attrs['input_files'] = np.string_(alltreedatafiles)
mtimes = [os.path.getmtime(f) for f in alltreedatafiles]
hf.attrs['input_filedatestamp'] = np.array(mtimes)
hf.attrs["input_catalog_type"] = np.string_(input_catalog_type)
hf.attrs[f"{input_catalog_type}_version"] = np.string_(version_info)
hf.attrs[f"{input_catalog_type}_columns"] = np.string_(hdrline)
hf.attrs[f"{input_catalog_type}_metadata"] = np.string_(metadata)
hf.attrs['contiguous-halo-props'] = write_halo_props_cont

(continues on next page)

2.1. Consistent-Trees HDF5 format for Tree catalogues 7

uchuutools documentation

(continued from previous page)

sim_grp = hf.create_group('simulation_params')
simulation_params = metadata_dict['simulation_params']
for k, v in simulation_params.items():

sim_grp.attrs[f"{k}"] = v

hf.attrs['HDF5_version'] = np.string_(h5py.version.hdf5_version)
hf.attrs['h5py_version'] = np.string_(h5py.version.version)

hf.attrs['Nforests'] = 0
hf.attrs['Ntrees'] = 0
hf.attrs['Nhalos'] = 0

These two lines are executed at the end, while creating
the container file :func:`update_container_h5_file`.
``hf_task`` here refers to ``hf`` in the preceeding
chunk of code
if standard_consistent_trees:

hf_task.attrs['consistent-trees-type'] = 'standard'
else:

hf_task.attrs['consistent-trees-type'] = 'parallel'

Halo-level info (hf['Forests'])

Halos are written under a Forests group within the hdf5 file. If each selected halo property is written separately
(i.e., with the default option of write_halo_props_cont=True), then individual halo properties are written
as a separate dataset as Forests/<property_name> (e.g., Forests/M200c). If all selected properties of a
halo are written contiguously (i.e., with the user-specified option of write_halo_props_cont=False), then the
halos are written as a single dataset Forests/halos.

For each forest, all halos are written contiguously. Further, within each forest, all halos from the same tree are written
contiguously. Hence the starting index and number of halos stored in the TreeInfo and ForestInfo datasets can
be directly used to read all halos from the same tree/forest.

forests_grp = hf.create_group('Forests')
if write_halo_props_cont:

Create a dataset for every halo property
For any given halo property, the value
for halos will be written contiguously
(structure of arrays)
for name, dtype in output_dtype.descr:

forests_grp.create_dataset(name, (0,), dtype=dtype,
chunks=chunks,
compression=compression,
maxshape=(None,))

else:
Create a single dataset that contains all properties
of a given halo, then all properties of the next halo,
and so on (array of structures)
forests_grp.create_dataset('halos', (0,),

dtype=output_dtype,
chunks=chunks,
compression=compression,
maxshape=(None,))

By design, the halo properties are written as chunked and compressed. If you plan to read these hdf5 files repeatedly,

8 Chapter 2. HDF5 Output Data Format

uchuutools documentation

then you will get faster read-times if you re-write the hdf5 files as unchunked. If you intend to keep the compression,
then you will likely get a better compression ratio as well (compression in hdf5 only works on the chunks). You can
accomplish that by running the following on the command-line:

h5repack -i forest_0.h5 -o forest_0_conti.h5 -l CONTI
h5repack -i forest_0_conti.h5 -o forest_0_conti_gz4.h5 -f GZIP=4
if the previous two are successfull
mv forest_0_conti_gz4.h5 forest_0.h5 && rm forest_0_conti.h5

Note: Any special characters in the Consistent-Trees halo property name are replaced with a single underscore _. For
example, A[x](500c) in the input ascii file is written as A_x_500c in the hdf5 file. This name conversion is done
by the function uchuutools.utils.sanitize_ctrees_header().

def sanitize_ctrees_header(headerline):
import re

header = [re.sub('\(\d+\)$', '', s) for s in headerline]
print("After normal sub: header = {}\n".format(header))
header = [re.sub('[^a-zA-Z0-9 \n\.]', '_', s) for s in header]
print(f"After replacing special characters with _: header = {header}\n")
header = [re.sub('_$', '', s) for s in header]
print(f"After replacing trailing underscore: header = {header}\n")
header = [re.sub('(_)+', '_', s) for s in header]
print(f"After replacing multiple underscores: header = {header}")
return header

Forest-level info (hf['Forestinfo])

Since all halos from the same forest are written contiguously, the forest level info is there to allow easy access to entire
forests. This info is stored in the dataset ForestInfo and contains the following fields:

1. ForestID: Contains the ForestID as assigned by Consistent-Trees (np.int64)

2. ForestHalosOffset: Contains the index of the first halo contained within each forest

3. ForestNhalos: Contains the total number of halos within each forest (np.int64)

4. ForestNtrees: Contains the total number of trees within each forest (np.int64)

The number of entries in this ForestInfo dataset (i.e., the shape) equals the number of forests stored in the hdf5
file.

forest_dtype = np.dtype([('ForestID', np.int64),
('ForestHalosOffset', np.int64),
('ForestNhalos', np.int64),
('ForestNtrees', np.int64),])

hf.create_dataset('ForestInfo', (0,), dtype=forest_dtype,
chunks=True, compression=compression,
maxshape=(None,))

Tree-level info (hf['TreeInfo'])

Since the halos are stored on a per tree basis in the input ascii Consistent-Trees catalogue, data provenance requires
that we store that original information at a tree level as well. In addition, this allows us to quickly read a single tree

2.1. Consistent-Trees HDF5 format for Tree catalogues 9

uchuutools documentation

for visualisation/testing (rather than the entire forest). This info is stored in the dataset TreeInfo and contains the
following fields:

1. ForestID: Contains the ForestID as assigned by Consistent-Trees (np.int64)

2. TreeRootID: Contains the TreeRootID as assigned by Consistent-Trees (np.int64)

3. TreeHalosOffset: Contains the index of the first halo contained within each tree (np.int64)

4. TreeNhalos: Contains the total number of halos within each tree (np.int64)

5. Input_Filename: Contains the input ascii Consistent-Trees filename(string, 'S1024')

6. Input_FileDateStamp: Contains the modification time of the input ascii Consistent-Trees file (np.float)

7. Input_TreeByteOffset: Contains the byte offset of the first halo within the input ascii Consistent-Trees file
(np.int64)

8. Input_TreeNbytes: Contains the total number of bytes for this tree within the input ascii Consistent-Trees file
(np.int64)

Fields prefixed with Input_ are there solely for tracking back to the original files or ease of access
(Input_TreeNbytes). The number of entries in this TreeInfo dataset (i.e., the shape) equals the number of
trees stored in the hdf5 file.

tree_dtype = np.dtype([('ForestID', np.int64),
('TreeRootID', np.int64),
('TreeHalosOffset', np.int64),
('TreeNhalos', np.int64),
('Input_Filename', string_dtype),
('Input_FileDateStamp', np.float),
('Input_TreeByteOffset', np.int64),
('Input_TreeNbytes', np.int64),])

hf.create_dataset('TreeInfo', (0,), dtype=tree_dtype,
chunks=True, compression=compression,
maxshape=(None,))

2.2 Rockstar/Consistent-Trees HDF5 format for halo catalogues

Each Rockstar out_*.list, or Consistent-Trees hlist_*.list files is converted into a single hdf5 file
(hdf5-halocat file). The halos in the hdf5 files are written in the exact same order as the input ascii files.

2.2.1 HDF5-halocat file format

File-level Attributes

The hdf5-halocat file has attributes at the root-level to store metadata about the input ascii Consistent-trees
catalogues. The following attributes of the container hdf5 file facilitate reading the hdf5 file:

1. TotNhalos: Total number of halos stored in this file (np.int64)

2. scale_factor: Total number of forests stored in this file(np.float)

3. redshift: The redshift for the halo catalogue (np.float)

4. redshift_params: An hdf5 group that contains cosmological parameters (Omega_M, Omega_L, hubble) and
the simulation boxsize (Boxsize)

10 Chapter 2. HDF5 Output Data Format

uchuutools documentation

line_with_scale_factor = ([line for line in metadata
if line.startswith("#a")])[0]

scale_factor = float((line_with_scale_factor.split('='))[1])
redshift = 1.0/scale_factor - 1.0

give the HDF5 root some attributes
hf.attrs[u"input_filename"] = np.string_(input_file)
hf.attrs[u"input_filedatestamp"] = np.array(os.path.getmtime(input_file))
hf.attrs[u"input_catalog_type"] = np.string_(input_catalog_type)
hf.attrs[f"{input_catalog_type}_version"] = np.string_(version_info)
hf.attrs[f"{input_catalog_type}_columns"] = np.string_(hdrline)
hf.attrs[f"{input_catalog_type}_metadata"] = np.string_(metadata)
sim_grp = hf.create_group('simulation_params')
simulation_params = metadata_dict['simulation_params']
for k, v in simulation_params.items():

sim_grp.attrs[f"{k}"] = v

hf.attrs[u"HDF5_version"] = np.string_(h5py.version.hdf5_version)
hf.attrs[u"h5py_version"] = np.string_(h5py.version.version)
hf.attrs[u"TotNhalos"] = -1
hf.attrs[u"scale_factor"] = scale_factor
hf.attrs[u"redshift"] = redshift

Halo-level info

halos_grp = hf.create_group('HaloCatalogue')
halos_grp.attrs['scale_factor'] = scale_factor
halos_grp.attrs['redshift'] = redshift

dset_size = approx_totnumhalos
if write_halo_props_cont:

halos_dset = dict()
Create a dataset for every halo property
For any given halo property, the value
for halos will be written contiguously
(structure of arrays)
for name, dtype in parser.dtype.descr:

halos_dset[name] = halos_grp.create_dataset(name,
(dset_size,),
dtype=dtype,
chunks=True,
compression=compression,
maxshape=(None,))

else:
Create a single dataset that contains all properties
of a given halo, then all properties of the next halo,
and so on (array of structures)
halos_dset = halos_grp.create_dataset('halos', (dset_size,),

dtype=parser.dtype,
chunks=True,
compression=compression,
maxshape=(None,))

2.2. Rockstar/Consistent-Trees HDF5 format for halo catalogues 11

uchuutools documentation

12 Chapter 2. HDF5 Output Data Format

CHAPTER 3

Community guidelines

uchuutools is an open-source and free-to-use software package provided under the MIT license (see below for the full
license).

Users are highly encouraged to make contributions to the package or request new features by opening a GitHub issue.
As with contributions, if you find a problem or issue with uchuutools, please do not hesitate to open a GitHub issue
about it.

3.1 License

MIT License

Copyright (c) 2019-2021 Manodeep Sinha

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

13

https://github.com/uchuuproject/uchuutools/issues
https://github.com/uchuuproject/uchuutools/issues

uchuutools documentation

14 Chapter 3. Community guidelines

CHAPTER 4

Converters

Provides a collection of routines to convert from Rockstar and Consistent-Tree ascii catalogues into hdf5 files

Recommended usage:

import uchuutools.converters as utconv

4.1 Available submodules

convert_ctrees_to_h5() Converts ascii Consistent-Trees catalogues to hdf5

convert_halocat_to_h5() Converts ascii Rockstar and Consistent-Trees halo catalogues to hdf5

uchuutools.converters.convert_ctrees_to_h5(filenames, standard_consistent_trees=None,
outputdir=’./’, output_filebase=’forest’,
write_halo_props_cont=True, fields=None,
drop_fields=None, truncate=True, com-
pression=’gzip’, buffersize=None,
use_pread=True, max_nforests=None,
comm=None, show_progressbar=False)

Convert a set of forests from Consistent Trees ascii file(s) into an (optionally compressed) hdf5 file. Can be
invoked with MPI.

Parameters

• filenames (list of strings for Consistent-Trees catalogues, required) – The input ascii files
will be decompressed, if required.

• standard_consistent_tree (boolean, optional, default: None) – Whether the input filres
were generated by the Uchuu collaboration’s parallel Consistent-Trees code. If only two
files are specified in filenames, and these two filenames end with ‘forests.list’, and ‘lo-
cations.dat’, then a standard Consistent-Trees output will be inferred. If all files specified in
filenames end with ‘.tree’, then parallel Consistent-Trees is inferred.

15

uchuutools documentation

• outputdir (string, optional, default: current working directory (‘./’)) – The directory where
the converted hdf5 file will be written in. The output filename is obtained by appending
‘.h5’ to the input_file.

• output_filebase (string, optional, default: “forest”) – The output filename is constructed
using ‘{outputdir}/{output_filebase}_{rank}.h5’

• write_halo_props_cont (boolean, optional, default: True) – Controls if the individual halo
properties are written as distinct datasets such that any given property for all halos is written
contiguously (structure of arraysA).

When set to False, only one dataset (‘halos’) is created under the group ‘Forests’, and all
properties of a halo is written out contiguously (array of structures).

• fields (list of strings, optional, default: None) – Describes which specific columns in the
input file to carry across to the hdf5 file. Default action is to convert ALL columns.

• drop_fields (list of strings, optional, default: None) – Contains a list of column names
that will not be carried through to the hdf5 file. If drop_fields is not set for a parallel
Consistent-Trees run, then [Tidal_Force, Tidal_ID] will be used.

drop_fields is processed after fields, i.e., you can specify fields=None to cre-
ate an initial list of all columns in the ascii file, and then specify drop_fields =
[colname2, colname7, ...], and only those columns will not be present in the
hdf5 output.

• truncate (boolean, default: True) – Controls whether a new file is created on this ‘rank’.
When set to True, the header info file is written out. Otherwise, the file is appended to. The
code checks to make sure that the existing metadata in the hdf5 file is identical to the new
metadata in the ascii files being currently converted (i.e., tries to avoid different simulation
+ mergertree results being present in the same file)

• compression (string, optional, default: ‘gzip’) – Controls the kind of compression applied.
Valid options are anything that h5py accepts.

• buffersize (integer, optional, default: 1 MB) – Controls the size of the buffer how many
halos are written out per write call to the hdf5 file. The number of halos written out is this
buffersize divided the size of the datatype for individual halos.

• use_pread (boolean, optional, default: True) – Controls whether low-level i/o operations
(through os.pread) is used. Otherwise, higher-level i/o operations (via io.open) is
used. This option is only meaningful on linux systems (and python3+). Since pread does
not change the file offset, additional parallelisation can be implemented reasonably easily.

• max_nforests (integer >= 1, optional, default: None) – The maximum number of forests
to convert across all tasks. If a positive value is passed then the total number of forests
converted will be min(totnforests, max_nforests). ValueError is raised if the
passed parameter value is less than 1.

• comm (MPI communicator, optional, default: None) – Controls whether the conversion is
run in MPI parallel. Should be compatible with mpi4py.MPI.COMM_WORLD.

• show_progressbar (boolean, optional, default: False) – Controls whether a progressbar is
printed. Only enables progressbar on rank==0, the remaining ranks ignore this keyword.

Returns Returns True on successful completion.

uchuutools.converters.convert_halocat_to_h5(filenames, outputdir=’./’,
write_halo_props_cont=True, fields=None,
drop_fields=None, chunksize=100000,
compression=’gzip’, comm=None,
show_progressbar=False)

16 Chapter 4. Converters

uchuutools documentation

Converts a list of Rockstar/Consistent-Trees halo catalogues from ascii to hdf5.

Can be used with MPI but requires that the number of files to be larger than the number of MPI tasks spawned.

Parameters

• filenames (list of strings, required) – A list of filename(s) for the Rockstar/Consistent Trees
file. Can be compressed (.gz, .bz2, .xz, .zip) files.

• outputdir (string, optional, default: current working directory (‘./’)) – The directory where
the converted hdf5 file will be written in. The output filename is obtained by appending
‘.h5’ to the input_file. If the output file already exists, then it will be truncated.

• write_halo_props_cont (boolean, optional, default: True) – Controls if the individual halo
properties are written as distinct datasets such that any given property for ALL halos is
written contiguously (structure of arrays, SOA).

When set to False, only one dataset (‘halos’) is created, and ALL properties of a halo is
written out contiguously (array of structures).

• fields (list of strings, optional, default: None) – Describes which specific columns in the
input file to carry across to the hdf5 file. Default action is to convert ALL columns.

• drop_fields (list of strings, optional, default: None) – Describes which columns are not car-
ried through to the hdf5 file. Processed after fields, i.e., you can specify fields=None
to create an initial list of all columns in the ascii file, and then specify drop_fields =
[colname2, colname7, ...], and those columns will not be present in the hdf5
output.

• chunksize (integer, optional, default: 100000) – Controls how many lines are read in from
the input file before being written out to the hdf5 file.

• compression (string, optional, default: ‘gzip’) – Controls the kind of compression applied.
Valid options are anything that h5py accepts.

• comm (MPI communicator, optional, default: None) – Controls whether the conversion is
run in MPI parallel. Should be compatible with mpi4py.MPI.COMM_WORLD.

• show_progressbar (boolean, optional, default: False) – Controls whether a progressbar is
printed. Only enables progressbar on rank==0, the remaining ranks ignore this keyword.

Returns Returns True on successful completion.

4.1. Available submodules 17

uchuutools documentation

18 Chapter 4. Converters

CHAPTER 5

Utilities for Consistent-Trees Catalogues

Provides several useful utility functions that work with tree catalogues generated by Consistent-Trees.

uchuutools.ctrees_utils.read_locations_and_forests(forests_fname, locations_fname,
rank=0)

Returns a numpy structured array that contains both the forest and tree level info.

Parameters

• forests_fname (string, required) – The name of the file containing forest-level info like the
Consistent-Trees ‘forests.list’ file

• locations_fname (string, required) – The name of the file containing tree-level info like the
Consistent-Trees ‘locations.dat’ file

• rank (integer, optional, default:0) – An integer identifying which task is calling this func-
tion. Only used in status messages

Returns

trees_and_locations (A numpy structured array) – A numpy structured array containing the
fields <TreeRootID ForestID Filename FileID Offset TreeNbytes> The array is sorted by
(ForestID, Filename, Offset) in that order. This sorting means that all trees be-
longing to the same forest will appear consecutively regardless of the file that the corresponding
tree data might appear in. The number of elements in the array is equal to the number of trees.

Note: Sorting by Filename is implemented by an equivalent, but faster sorting on FileID.

uchuutools.ctrees_utils.get_aggregate_forest_info(trees_and_locations, rank=0)
Returns forest-level information from the tree-level information supplied.

Parameters

• trees_and_locations (numpy structured array, required) – A numpy structured array
that contains the tree-level information. Should be the output from the function
read_locations_and_forests()

• rank (integer, optional, default:0) – An integer identifying which task is calling this func-
tion. Only used in status messages

19

uchuutools documentation

Returns forest_info (A numpy structured array) – The structured array contains the fields
['ForestID', 'ForestNhalos', 'Input_ForestNbytes', 'Ntrees'] The
‘ForestNhalos’ field is set to 0, and is populated as the trees are processed. The number of
elements in the array is equal to the number of forests.

uchuutools.ctrees_utils.get_all_parallel_ctrees_filenames(fname)
Returns three filenames corresponding to the 'forests.list', 'locations.dat', and 'tree_*.
dat' files assuming the naming convention the Uchuu collaboration’s parallel Consistent-Trees code

Parameters fname (string, required) – A filename specifying the tree data file for a parallel
Consistent-Trees soutput

Returns

forests_file, locations_file, treedata_file (strings, filenames) – The filenames corresponding to
the 'forests.list', 'locations.dat' and the 'tree_*_*_*.dat' file generated
using the convention of the Uchuu collaboration. The convention is:

Standard CTrees Parallel CTrees
’forests.list’ ’<prefix>.forest’
’locations.dat’ ’<prefix>.loc’
’tree_*_*_*.dat’ ’<prefix>.tree’

uchuutools.ctrees_utils.check_forests_locations_filenames(filenames)
Accepts two filenames (in any order) and checks whether the files contain the correct data as expected in
‘forests.list’, ‘locations.dat’ and returns the files as (equivalent to) ‘forests.list’ and ‘locations.dat’

Parameters filenames (list of two filenames, string, required) – List containing two filenames cor-
responding to the standard ‘forests.list’ and ‘locations.dat’ (in any order, i.e., both [‘forests.list’,
‘locations.dat’] and [‘locations.dat’, ‘forests.list’] are valid)

Returns forests_file, locations_file (strings, filenames) – The filenames equivalent to the
‘forests.list’, ‘locations.dat’ (in that order)

uchuutools.ctrees_utils.validate_inputs_are_ctrees_files(ctrees_filenames,
base_metadata=None,
base_version=None,
base_input_catalog_type=None)

Checks the files contain Consistent-Trees catalogues derived from the same simulation and Consistent-Trees
configuration.

Parameters ctrees_filenames (list of filenames, string, required) – The input filenames (potentially)
containing Consistent-Trees catalogues.

Note: Only unique filenames within this list are checked

Returns True on successful validation, ValueError otherwise

uchuutools.ctrees_utils.get_treewalk_dtype_descr()
Returns the description for the additional fields to add to the forest for walking the mergertree

Parameters None

Returns mergertree_descr (list of tuples) – A list of tuples containing the names and datatypes
for the additional columns needed for walking the mergertree. This list can be used to create a
numpy datatype suitable to contain the additional mergertree indices

uchuutools.ctrees_utils.add_tree_walk_indices(forest, rank=0)
Adds the various mergertree walking indices and IDs. These include indices to access the host FOF halo<-
>subhalo hierarchy, and the progenitor-descendant hierarchy.

20 Chapter 5. Utilities for Consistent-Trees Catalogues

uchuutools documentation

The mergertree indices are filled in-place and no additional return occurs. The specific indices are listed in the
function get_treewalk_dtype_descr()

Parameters

• forest (numpy structured array, required) – An array containing all halos from the same
forest

• rank (integer, optional, default=0) – The unique identifier for the current task. Only used
within an error statement

Returns True on successful completion

21

uchuutools documentation

22 Chapter 5. Utilities for Consistent-Trees Catalogues

CHAPTER 6

General Utilities

Provides several utility functions.

uchuutools.utils.get_parser(filename, fields=None, drop_fields=None)
Returns a parser that parses a single line from the input ascii file

Parameters

• filename (string, required) – A filename containg Rockstar/Consistent-Trees data. Can be a
compressed file if the compression is one of the types supported by the generic_reader
function.

• fields (list of strings, optional, default: None) – Describes which specific columns in the
input file to carry across to the hdf5 file. Default action is to convert ALL columns.

• drop_fields (list of strings, optional, default: None) – Describes which columns are not car-
ried through to the hdf5 file. Processed after fields, i.e., you can specify fields=None
to create an initial list of all columns in the ascii file, and then specify drop_fields =
[colname2, colname7, ...], and those columns will not be present in the hdf5
output.

Returns parser (an instance of BaseParseFields) – A parser that will parse a single line (read from
a Rockstar/Consistent-Trees file) and create a tuple containing only the relevant columns.

uchuutools.utils.get_approx_totnumhalos(input_file, ndatabytes=None)
Returns an (approximate) number of lines containing data in the input_file.

Assumes that the only comment lines in the file occur at the beginning. Comment lines are assumed to begin
with ‘#’.

Parameters

• input_file (string, required) – The input filename for the Rockstar/Consistent Trees file

• ndatabytes (integer, optional) – The total number of bytes being processed. If not passed,
the entire disk size of the input_file minus the initial header lines will be used (i.e.
assumes that the entire file is being processed)

23

uchuutools documentation

Returns approx_totnumhalos (integer) – The approximate number of halos in the input file. The
actual number of halos should be close but can be smaller/greater than the approximate value.

uchuutools.utils.generic_reader(filename, mode=’rt’)
Returns a file-reader with capability to read line-by-line for both compressed and normal text files.

Parameters

• filename (string, required) – The filename for the associated input/output. Can be a com-
pressed (.bz2, .gz, .xz, .zip) file as well as a regular ascii file

• mode (string, optional, default: ‘rt’ (readonly-text mode)) – Controls the kind of i/o opera-
tion that will be performed

Returns f (file handle, generator) – Yields a generator that has the readline feature (i.e., sup-
ports the paradigm for line in f:). This file-reader generator is suitable for use in with
statements, e.g., with generic_reader(<fname>) as f:

uchuutools.utils.get_metadata(input_file)
Returns metadata information for input_file. Includes all comment lines in the header,
Rockstar/Consistent-Trees version, and the input catalog type (either Rockstar or Consistent-Trees).

Assumes that the only comment lines in the file occur at the beginning. Comment lines are assumed to begin
with ‘#’.

Parameters input_file (string, required) – The input filename for the Rockstar/Consistent Trees file
Compressed files (‘.bz2’, ‘.gz’, ‘.xz’, ‘.zip’) are also allowed as valid kinds of input_file

Returns

• metadata_dict (dictionary) – The dictionary contains four key-value pairs corresponding
to the keys: [‘metadata’, ‘version’, ‘catalog_type’, ‘headerline’].

• metadata (string) – All lines in the beginning of the file that start with the character ‘#’.

• version (string) – Rockstar or Consistent-Trees version that was used to generate
input_file

• catalog_type (string) – Is one of [Rockstar, Consistent Trees, Consistent
Trees (hlist)] and indicates what kind of catalog is contained in input_file

• headerline (string) – The first line in the input file with any leading/trailing white-space,
and any leading ‘#’ removed

uchuutools.utils.resize_halo_datasets(halos_dset, new_size, write_halo_props_cont, dtype)
Resizes the halo datasets

Parameters

• halos_dset (dictionary, required)

• new_size (scalar integer, required)

• write_halo_props_cont (boolean, required) – Controls if the individual halo properties are
written as distinct datasets such that any given property for ALL halos is written contigu-
ously (structure of arrays, SOA).

• dtype (numpy datatype)

Returns Returns True on successful completion

uchuutools.utils.check_and_decompress(fname)
Decompresses the input file (if necessary) and returns the decompressed filename

Parameters fname (string, required) – Input filename, can be compressed

24 Chapter 6. General Utilities

uchuutools documentation

Returns decomp_fname (string) – The decompressed filename

uchuutools.utils.distribute_array_over_ntasks(cost_array, rank, ntasks)
Calculates the subscript range for the rank’th task such that the work-load is evenly distributed across ntasks.

Parameters

• cost_array (numpy array, required) – Contains the cost associated with processing each
element of the array

• rank (integer, required) – The integer rank for the task that we need to compute the work-
load division for

• ntasks (integer, required) – Total number of tasks that the array should be (evenly) dis-
tributed across

Returns

(start, stop) (A tuple of (np.int64, np.int64)) – Contains the initial and final subscripts that the
rank task should process.

Note: start, stop are both inclusive, i.e., all elements from start to stop should be included.
For python array indexing with slices, this translates to arr[start:stop + 1].

uchuutools.utils.check_for_contiguous_halos(h5_task_file, write_halo_props_cont)
Checks that the hdf5 file can be appended to with the requested writing of halo properties

Parameters

• h5_task_file (string, required) – An existing hdf5 file. The file may or may not contain ha-
los, but the dataset (or datasets, depending on the value of write_halo_props_cont)
for the halo properties should already be created

• write_halo_props_cont (boolean, required) – Controls if the individual halo properties are
written as distinct datasets such that any given property for ALL halos is written contigu-
ously (structure of arrays, SOA).

Returns Returns True on successful completion

uchuutools.utils.write_halos(halos_dset, halos_dset_offset, halos, nhalos_to_write,
write_halo_props_cont)

Writes halos into the relevant dataset(s) within a hdf5 file

Parameters

• halos_dset (dictionary, required) – Contains the halos dataset(s) within a hdf5 file where
either the entire halos array or the individual halo properties should be written to. See
parameter write_halo_props_cont for further details

• halos_dset_offset (scalar integer, required) – Contains the index within the halos dataset(s)
where the write should start

• halos (numpy structured array, required) – An array containing the halo properties that
should be written out into the hdf5 file. The entire array may not be written out, see the
parameter nhalos_to_write

• nhalos_to_write (scalar integer, required) – Number of halos from the halos array that
should be written out. Can be smaller than the shape of the halos array

• write_halo_props_cont (boolean, required) – Controls if the individual halo properties are
written as distinct datasets such that any given property for ALL halos is written contigu-
ously (structure of arrays, SOA).

Returns Returns True on successful completion of the write

25

uchuutools documentation

uchuutools.utils.update_container_h5_file(fname, h5files, stan-
dard_consistent_trees=True)

Writes the container hdf5 file that has external links to the hdf5 datafiles with the mergertree information.

Parameters

• fname (string, required) – The name of the output container file (usually forest.h5). A
new file is always created, however, if the file fname previously existed then the external
links are preserved.

• h5files (list of filenames, required) – The list of filenames that were either newly created or
updated.

If the container file fname exists, then the union of the filenames that already existed in
fname and h5files will be used to create the external links

• standard_consistent_tree (boolean, optional, default: True) – Specifies whether the in-
put files were from a parallel Consistent-Trees code or the standard Consistent-Trees code.
Assumed to be standard (i.e., the public version) of the Consistent-Trees catalog

Returns Returns True on successful completion of the write

26 Chapter 6. General Utilities

Python Module Index

c
uchuutools.converters, 13
uchuutools.ctrees_utils, 17

u
uchuutools.utils, 21

27

uchuutools documentation

28 Python Module Index

Index

A
add_tree_walk_indices() (in module uchuu-

tools.ctrees_utils), 20

C
check_and_decompress() (in module uchuu-

tools.utils), 24
check_for_contiguous_halos() (in module

uchuutools.utils), 25
check_forests_locations_filenames() (in

module uchuutools.ctrees_utils), 20
convert_ctrees_to_h5() (in module uchuu-

tools.converters), 15
convert_halocat_to_h5() (in module uchuu-

tools.converters), 16

D
distribute_array_over_ntasks() (in module

uchuutools.utils), 25

G
generic_reader() (in module uchuutools.utils), 24
get_aggregate_forest_info() (in module

uchuutools.ctrees_utils), 19
get_all_parallel_ctrees_filenames() (in

module uchuutools.ctrees_utils), 20
get_approx_totnumhalos() (in module uchuu-

tools.utils), 23
get_metadata() (in module uchuutools.utils), 24
get_parser() (in module uchuutools.utils), 23
get_treewalk_dtype_descr() (in module uchu-

utools.ctrees_utils), 20

R
read_locations_and_forests() (in module

uchuutools.ctrees_utils), 19
resize_halo_datasets() (in module uchuu-

tools.utils), 24

U
uchuutools.converters (module), 13
uchuutools.ctrees_utils (module), 17
uchuutools.utils (module), 21
update_container_h5_file() (in module uchu-

utools.utils), 25

V
validate_inputs_are_ctrees_files() (in

module uchuutools.ctrees_utils), 20

W
write_halos() (in module uchuutools.utils), 25

29

	Getting started
	Installation

	HDF5 Output Data Format
	Consistent-Trees HDF5 format for Tree catalogues
	Container HDF5 file format
	HDF5-treecat file format

	Rockstar/Consistent-Trees HDF5 format for halo catalogues
	HDF5-halocat file format

	Community guidelines
	License

	Converters
	Available submodules

	Utilities for Consistent-Trees Catalogues
	General Utilities
	Python Module Index
	Index

